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1 INTRODUCTION

Abstract

Building upon recent developments in PAC-Bayesian theory for Domain Adap-
tation, our analysis emphasizes kernel methods, particularly the Random Fourier
Features (RFF). Drawing inspiration from prior works, we interpret the pseudo-
kernel, obtained via RFF, as a predictor within the PAC-Bayesian context in the
specific case of Unsupervised Domain Adaptation. Thanks to this interpretation
we propose a new PAC-Bayesian bound on the representation in the target domain
associated with the distribution of the RFF of a pseudo kernel. We contend that
the optimal distribution of these features translates to better data representation
enabling classification in the target domain even in the absence of labels. We pro-
pose to learn a Support Vector Machine using the obtained data representation to
perform classification on the target domain. We evaluate this algorithm and com-
pare it with other protocols designed for Domain Adaptation in the PAC-Bayesian
framework to assess its interest.

1 Introduction

While showing outstanding results lately classical machine learning relies on a strong
assumptions. One of them is that the learning data and the data on which the learned
model will be used come from a single unknown distribution. Therefore to evaluate the
performance of the model when faced with unseen instances it is common to consider the
performance on a test set drawn from this distribution to be a good estimator. However,
there are many cases where the assumption of the data coming from a single unknown
distribution does not hold in practice. Think for a example of supervised classification
model trained on socio-economic descriptor from the french population that would ul-
timately be used on the Brazilian population. The performance on the french domain
would not be representative of those on the Brazilian domain. Indeed, the same features
could have widely different meaning. For example geographic information would bear
much different meaning, the fact of living near the Amazonian forest might be very im-
portant as a descriptor in the Brazilian population while it makes absolutely no sense in
France. The same could be said about living or not in the capital city since both coun-
tries have different system of centralization. The performance on a test set drawn from
the french population would give little to no information about the true performance on
the model, i.e., its performance on the Brazilian domain.
In this kind of situation it is necessary to adapt the model learned using source data to
be used on new and different target data. Formally we differentiate between two dis-
tributions also called domains, a source domain and a target domain, which puts us in
the domain adaptation framework. More precisely we consider in this work unsupervised
domain adaptation, in the case of binary classification, meaning that we have access to
the label we want to predict for the source domain but not for the target one.
This is a challenging task that requires specific tools and methods, more so it is espe-
cially hard to get guarantees on the performance of a model. These guarantees usually
take form of upper bound on the expected risk, also called generalization bounds, over
the target domain, which quantifies the expected error on unseen data. In traditional
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2 GENERALITIES

machine learning the guarantees usually rely heavily on the assumption that the aver-
age training error is a good estimator of the expected risk, since both measure regards
data coming from a same distribution. However when the distribution of the labeled
data used to compute the average training (source) and of the unseen data for which
the expected risk is considered (target) differs the relation does not hold anymore. It is
therefore necessary to employ specific tools to build these bounds.
Our choice of considering expected risk bounds is not only motivated by the development
of theoretical guarantees. Indeed we aim to ultimately learn in a way that minimizes
the generalization error, the final model will then be trust-able.

The kind of theoretical guarantees we consider in this work originate from the PAC-
Bayesian theory that combines the Probably Approximately Correct (PAC) learning
standpoint and Bayesian inference. In this framework the model is defined as a com-
bination of hypotheses according to a probability distribution. In comparison with the
classical generalization bounds the PAC-Bayesian ones are more flexible, can incorporate
prior knowledge and are convenient to minimize by finding an optimal distribution over
the hypotheses. For this work we consider specifically PAC-Bayesian developments for
Domain Adaptation from [Germain et al., 2020].

The analysis we develop is focused on kernel methods [Hofmann et al., 2008] and
especially on Random Fourier Features (RFF) that let one approximate a kernel by
combining trigonometric hypothesis according to its Fourier transform. We use the
work of [Letarte et al., 2019] who shown that the pseudo kernel obtained by combining
the RFF according to an arbitrary distribution can be interpreted as a predictor and
therefore be analyzed by the PAC-Bayesian framework. For binary classification the
Fourier features are considered as hypotheses on the belonging of two points to the same
class. The optimal distribution of these features will then be the one leading to the
best representation of the data for classification. The aim of the present work is to
extend this interpretation of kernel approximation and representation learning through
the PAC-Bayesian theory for the case of Domain Adaptation. We therefore develop new
bounds on the representation of the data points that lead to a new space of representation
suitable for the task at hand.

2 Generalities

2.1 Notations and Setting

We consider binary classification, with X ⊆ Rd the input space and Y = {−1,+1} the
output set. We define an unknown distribution, or domain, D on X ×Y with (x, y) ∈ D
an instance drawn according to this distribution. More generally we have a learning
sample S of n instance drawn iid from D as S = {(xi, yi)}ni=1 ∼

iid
D. An other necessary

tool for the learning a procedure is a space of hypotheses H that contains classifiers h
of the form h : X −→ [−1,+1], that we call real-valued voters, since there output can be
any real value in the interval.

Therefore given the learning sample S and the hypotheses space H the objective is to
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2.1 Notations and Setting 2 GENERALITIES

find the classifier h ∈ H giving the least classification errors on the unknown distribution
D. For this it is necessary to define a measure to assess the quality of classification called
a loss function ℓ In the classification setting some functions are classical, we present here
two : the 0−1 loss and the linear loss as illustrated in Figure 1. The 0−1 loss is defined
as :

ℓ0−1(h(x), y) = 1[sign(h(x)) ̸= y],

where
ℓ0−1 : [−1,+1]× Y −→ 0, 1

with sign(c) = −1 if c < 0, sign(c) = +1 if c > 0. It can also be computed in a
more convenient way by considering, ℓ0−1(h(x), y) = y sign(h(x))y. Note that, as in the
definition above, when h(·) does not output binary value one can take the sign of the
prediction to compute the 0− 1 loss. However, in this case the linear loss, that measure
the amount of error for each prediction is more appropriate, defined as :

ℓlin(h(x), y) =
1

2
(1− h(x) · y).

where
ℓlin : [−1,+1]× Y −→ 0, 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0
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1
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Figure 1: The linear loss ℓlin and the 0-1 loss ℓ0−1

To extend the measure to the distribution D or the learning sample S we consider
the risk associated with a loss. In the case of S we call it the empirical risk and for D
the true risk. Given a loss ℓ, a domain D, a hypotheses space H, we have the true risk
for all h ∈ H:

RD(h) := E
(x,y)∼D

ℓ(h(x), y).

Then, given loss ℓ, a training sample S of size n, a hypotheses space H, we define the
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2.2 Finding the best classifier 2 GENERALITIES

empirical risk for all h ∈ H:

R̂S(h) :=
1

n

n∑
i=1

ℓ(h(xi), yi). (1)

2.2 Finding the best classifier

Empirical Risk Minimization

From the previous definitions the best classifier h∗ ∈ H, is the one solving the true risk
minimization for D, such that,

h∗ = argmin
h∈H

RD(h).

However the only information available during the learning process is the empirical risk
R̂S(h) over the sample S. A classical approach is then to consider the empirical risk
as a good estimator of the true one, therefore minimizing the former should amount to
minimize the latter. The learning process consists then of the empirical risk mini-
mization, defined for a sample S as,

h∗ = argmin
h∈H

R̂S(h).

However, since the learning sample may not be a perfect representation of the unknown
domain D, trusting it too much during the learning process may lead to numerous issues.
For example, the case of over-fitting where by being to adapted to the training problem
the classifier will perform significantly worse on new data points compared with known,
train data points, i.e it will poorly generalize.

From there two important problems arise. How to assess the true performance of
the classifier ? How to learn with good guarantees on the minimization of the true risk ?.

Generalization guarantees

To answer first issue it is possible to consider generalization guarantees, usually tak-
ing the form of generalization bounds. They generally take the form of Probably Ap-
proximately Corrects (PAC) bounds [Vapnik and Chervonenkis, 1982] [Valiant, 1984]
[Haussler and Warmuth, 2018], which consider the divergence between true and em-
pirical risk :

P
(∣∣∣RD(h)− R̂D(h)

∣∣∣ ≤ ϵ
)
≥ 1− δ,
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2.3 The PAC-Bayesian standpoint 2 GENERALITIES

with ϵ > 0 and δ ∈ [0, 1]. Or in a form giving a bound directly over the true risk RD(h)
, with ϵ and δ in the same ranges, we can formulate the PAC inequality as

P

(
RD(h) ≤ R̂D(h) + ϵ

)
≥ 1− δ (2)

However those bounds can take different forms and be developed in various of ways, in-
cluding but not limited to, VC-Dimension based bounds [Vapnik, 1999] [Blumer et al., 1989],
Rademacher complexity-based bounds [Bartlett and Mendelson, 2002]
[Koltchinskii and Panchenko, 2000], Uniform stability based bounds [Bousquet and Elisseeff, 2000]
[Bousquet and Elisseeff, 2002] and PAC-Bayesian bounds [Guedj, 2019] [Alquier, 2023].
In the present study we consider the PAC-Bayesian framework introduced by [McAllester, 1998]
and [Shawe-Taylor and Williamson, 1997]. This framework has the advantage of provid-
ing flexible, tight bounds and of providing a way of answering our second question by
letting us find the final classifier minimizing the bounded true risk.

2.3 The PAC-Bayesian standpoint

2.3.1 Specificity and tools

Before diving into the PAC-Bayesian bounds we need to highlight what makes it special
and define the important tools to work within this framework. In particular the final
model is not anymore an unique classifier h ∈ H but a combination of all hypotheses in
the hypotheses space according to a probability distribution Q. We start from a prior
distribution P and the goal is to find the posterior distribution Q leading to the best
classifier, in a Bayesian fashion. This prior distribution P can be of two types. The first
type is informed [Lever et al., 2010] [Lever et al., 2013], meaning that it incorporates
information about the problem at hand, this can be done, for example, via a sort of
pre training or by taking into consideration the learning scenario. We can say it incor-
porates prior knowledge to stay within the border of the Bayesian vocabulary. In the
other case which is the most widely spread due to its convenience it is, well, not informed.

Every h ∈ H can be considered as a predictor, or voter, but what matters is the
combination of these predictors. This framework is very versatile and can be used for
a wide variety of learning scenario, ranging from Support Vector Machines [Valiant, 1984]
[Ambroladze et al., 2006] (SVM) to neural networks [Liao et al., 2020] [Perez-Ortiz et al., 2021]
[Rivasplata et al., 2019], even linear regression can be interpreted this way [Germain et al., 2017]
if one want to step outside of classification.

The learning process is thus focused on finding probability distribution giving rise
to best classifier. A classical predictor to consider is the Bayes classifier or the majority
vote, for a distribution Q over H it takes the following form,

BQ(x) = sign

(
E

h∼Q
h(x)

)
. (3)
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2.3 The PAC-Bayesian standpoint 2 GENERALITIES

To this Bayes classifier BQ associated with a distribution Q, we can define the Bayes
risk over a unknown data distribution D as :

RD(BQ) := E
(x,y)∼D

ℓ(BQ(x), y).

Since the output of BQ is binary it is equivalent to use the 0-1 loss or the linear loss. More
precisely the latter one is equal to the former one. Furthermore the Bayes Classifier we
consider also the Gibbs Classifier associated with Q that we denote GQ. It is a stochastic
classifier in the sense that it draws a hypothesis h ∈ H according to Q and use it to make
its prediction. This classifier can make different prediction for a same x ∼ D when the
output of BQ will always be the same. The risk associated with this stochastic classifier
for real-valued voters is defined as,

RD(GQ) := E
h∼Q

RD(h) (4)

= E
h∼Q

E
(x,y)∼D

ℓlin(h(x), y)

=
1

2

(
1− E

(x,y)∼D
E

h∼Q
h(x) · y

)
.

An important results from the PAC-Bayesian literature is that the risk of the Bayes
classifier is bounded by twice the risk of the Gibbs classifier [McAllester, 2003]
[Langford and Shawe-Taylor, 2002],

RD(BQ) ≤ 2 ·RD(GQ).

Proof. In appendix

This is very useful since the second is much more convenient to manipulate. There-
fore the upper bounds constructed via the PAC-Bayesian theory usually concern the
Gibbs risk gives with the advantage that it immediately upper bounds the Bayes risk
which is the one on which we ultimately want to have results.

2.3.2 Margin of the Bayes classifier

As studied in [Germain et al., 2015], an important tool to develop pertinent analysis is
the random variable MD

Q that outputs for a specific (x, y) ∈ D the margin of Bayes
classifier BQ,

MQ(x, y) = E
h∼Q

y · h(x). (5)

Specifically we are interested in the moments of this random variable. We start with its
first moment µ1(M

D
Q ) that let us relate the Gibbs risk with the margin of the majority
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2.3 The PAC-Bayesian standpoint 2 GENERALITIES

vote,

µ1(M
D
Q ) = E

(x,y)∼D
MQ(x, y)

= E
(x,y)∼D

E
h∼Q

y · h(x).

Interestingly it is let us rewrite the Gibbs risk R(GQ) with a different point of view than
its original definition in Equation 4

R(GQ) =

(
1− E

(x,y)∼D
E

h∼Q
h(x) · y

)
(6)

=

(
1− E

(x,y)∼D
MQ(x, y)

)
(7)

=
(
1− µ1(M

D
Q )
)
. (8)

Then we define the second moment of MD
Q that will allow useful useful interpretation

latter, we design it µ2(M
D
Q ) and we have,

µ2(M
D
Q ) = E

(x,y)∼D
[MQ(x, y)]

2

= E
(x,y)∼D

y2
[
E

h∼Q
h(x)

]2
= E

x∼DX

[
E

h∼Q
h(x)

]2
.

(9)

2.3.3 Joint error and disagreement

To allow a useful decomposition of the risk we recall the notions ofexpected disagreement
and expected joint error. For real-valued voters the first one considers the expected
amount by which the outputs of the voters are similar. For a domain D, its marginal
distribution DX and any probability distribution Q over the hypotheses space H, the
expected disagreement dDX (Q) is defined as,

dDX (Q) = E
x∼DX

E
h∼Q

E
h′∼Q

ℓlin(h(x), h
′(x))

=
1

2

(
1− E

x∼DX
E

h∼Q
E

h′∼Q
h(x) · h′(x)

)
=

1

2

(
1− E

x∼DX

[
E

h∼Q
h(x)

]2)
.

On the other hand for a domain D and any probability distributionQ over the hypotheses
space H, the expected joint error eD(Q) gives a measure of the expected ability of two
voters h, h′ to make the same prediction when predicting on an instance (x, y) ∼ D is
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2.3 The PAC-Bayesian standpoint 2 GENERALITIES

defined as,
eD(Q) = E

(x,y)∼D
E

h∼Q
E

h′∼Q
ℓlin(h(x), y) · ℓlin(h′(x), y).

[Germain et al., 2015] observed that by using this quantities it is possible to decompose
the Gibbs risk in such a manner that it is entirely represented by half the expected
disagreement and the expected joint error such that, for a distribution Q over H and a
domain D, we have

RD(GQ) =
1

2
dDX (Q) + eD(Q) (10)

By defining the empirical disagreement and joint error for a distribution Q over H
and a sample S ∼ Dn of size n as,

d̂DX (Q) =
1

n

n∑
i=1

E
h∼Q

E
h′∼Q

ℓlin(h(x), h
′(x)) (11)

and

êS(Q) =
1

n

n∑
i=1

E
h∼Q

E
h′∼Q

ℓlin(h(x), y) · ℓlin(h′(x), y). (12)

We get the following distribution of the empirical risk R̂S(GQ) = Eh∼Q R̂S(h) similar to
Equation (10),

R̂S(GQ) =
1

2
d̂DX (Q) + êS(Q).

We consider in the next subsection the PAC-Bayesian theorem that originates from [McAllester, 1998].

2.3.4 Bounds

The PAC-Bayesian generalization bounds are usually dependant on two main quantities
: the empirical risk of the Gibbs classifier R̂S(GQ), and the Kullback-Leibler (KL)
divergence. The KL-divergence is defined for two probability distributions Q and P ,

KL(Q||P ) = E
h∼Q

P (h)

Q(h)
.

It is a divergence metric that measures how much the distribution Q is different from the
second one P . By considering Q and P as the posterior and prior distribution associated
with the problem at hand it will act let us evaluate how much the posterior distribution
diverges from the prior distribution.

Thereafter the PAC-Bayesian bound is presented as trade-off between the empirical
Gibbs risk, acting as an estimator of the real Gibbs risk RD(GQ), and the KL-divergence
between the prior and the posterior distribution. We recall below the PAC-Bayesian
bound as formulated in [Germain et al., 2009b].
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2.4 Kernel methods and Random Fourier Features. 2 GENERALITIES

Theorem 1 ([Germain et al., 2009b]). For any domain D, any hypotheses space H, any
prior distribution P over H, any ϵ ∈ (0, 1], and any real number c > 0, with at least
probability 1−ϵ over the random choice S ∼ Dn of size n, for every posterior distribution
Q over H, we have

RD(GQ) ≤
1

1− e−c

[
c · R̂S(GQ) +

1

n

[
KL(Q||P ) + ln

1

ϵ

]]
Note that the value of hyperparameter c that controls the trade-off between empirical

risk and KL-divergence Moreover, if we formulate it a bit differently, for any domain D,
any set of hypotheses H, any prior distribution P over H, any ϵ ∈ (0, 1], and any real
number c > 0, we have

P
S∼Dn

(
∀ Q on H : RD(GQ) ≤

1

1− e−c

[
c · R̂S(GQ) +

1

n

[
KL(Q||P ) + ln

1

ϵ

]])
≤ 1− ϵ,

which is strictly equivalent to Theorem 1 but in a form similar to Equation (2).

2.4 Kernel methods and Random Fourier Features.

In the present work we focus on Kernel methods and in particular the PAC-Bayesian
interpretation of their approximation with Random Fourier Features (RFF) introduced
by [Rahimi and Recht, 2007].

2.4.1 Kernels and kernel methods

For all the following and whenever we consider kernels, we suppose X to be a compact
subset of R. A kernel function takes as input two feature vector and output a real
coordinate,

k : X ×X −→ R, (x,x′) −→ k(x,x′).

This kernel has to verify two condition. First it must be symmetric meaning that
∀(x,x′) ∈ X ×X we have,

k(x,x′) = k(x′,x).

Second, it must be positive semi definite, so for any set {xi}ni=1 ∈ X of size n and ∀c ∈ Rd

we have,
n∑

i=1

n∑
j=1

cicjk(xi,xj) ≥ 0.

The above properties are necessary to apply the following theorem, known as the Mercer
theorem [Mercer, 1909].

Theorem 2 (Mercer theorem [Mercer, 1909]). Let X be a compact subset of Rd and k a
positive semi-definite, symmetric and continuous function. Then there is an orthonor-
mal basis {ϕi}i∈N∗ of L2(X ) and a nonnegative sequence {λi}i∈N∗, such that k has the

10



2.4 Kernel methods and Random Fourier Features. 2 GENERALITIES

representation :

k(x, x′) =
∞∑
i=1

λiϕi(x)ϕi(x
′) = ⟨ϕ(x), ϕ(x)⟩

with ϕ(x) = (
√
λ1ϕ1(x), . . . ,

√
λiϕi(x), . . .).

This theorem allows the representation of a kernel’s output as the inner product of
the transformation of the two input instances (x,x′) ∈ X 2 through a function ϕ. This
function is called a feature map, as it maps a data point from X into a new feature space
Z,

ϕ : X −→ Z,

with the condition of Z being an inner product space, i.e. a space equipped with an
inner product. This new representation can be very high dimensional or infinite dimen-
sional and enable a better representation of the data. For example, in a classification
task where the classes aren’t linearly separable in the initial feature space they might be
after the mapping in Z.

Kernel trick

The strength of kernels is apparent in learning problems that rely on the inner product
between instances. Indeed in this case, the following representation of the kernel output
allowed by Mercer Theorem,

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, (13)

(with ⟨·, ·⟩ the inner product) lets the learning be done in the feature space Z without
having to compute the explicit coordinates of the data in that space. Only the kernel
output is required to access all the necessary information, this is called the kernel trick.
This trick has been used to ”kernelize” a numerous learning protocols, the most famous
one being Support Vector Machines [Valiant, 1984] but we can also cite ridge regres-
sion [McDonald, 2009] [Vovk, 2013], Principal Component Analysis (PCA) [Wold et al., 1987]
[Schölkopf et al., 1997] or Gaussian processes [Rasmussen, 2003].

Different kernel functions can be used, each allowing to tackle a learning problem in
a different feature space. Some of the most popular ones are,

• the polynomial kernel, for arbitrary polynomial order p :

k(x,x′) = (⟨x,x′⟩+ b)p

• the linear kernel,
k(x,x′) = ⟨x,x′⟩,

11



2.4 Kernel methods and Random Fourier Features. 2 GENERALITIES

• the Gaussian, or Radial Basis Function(RBF), kernel,

k(x,x′) = e(−γ||x−x′ ||2) (14)

with γ a dilation hyper-parameter to tune.

Once a kernel function as been chosen and a learning sample S ∼ Dn of size n as been
drawn, it is possible to build the associated Gram matrix K of size n× n that contains
the values of every couple of instances,

K = (k(xi,xj))i,j .

This matrix is different of a classical data matrix X of size n× d with d the dimension
of the features, which associate to every instance the value of all of its features.

2.4.2 Random Fourier Features

The Gram matrix defined just before can become very expensive in both time and
memory to deal with when the number of data points grows. This issue is one of the
drawback from kernel methods and it is to answer it that the methods of Random
Fourier Features (RFF) have been introduced by [Rahimi and Recht, 2007]. The idea
is to approximate the value of a shift invariant kernels using properties of its Fourier
transform. We denote δ = x−x′ the value of the difference between two data points
from X , a shift invariant kernel as therefore to verify,

k(x,x′) = k(x−x′) = k(δ).

Put into words the kernel outputs only depends on the difference of the instances.

The idea is to take the Fourier transform of k(δ) for δ ∈ Rd,

p(ω) =
1

(2π)d

∫
Rd

k(δ)e−iω δd δ ,

and to consider the results p(ω) as a probability distribution, which is guaranteed by
Bochner’s Theorem [Bochner, 1933] [Rudin, 2017] over the coefficient ω ∈ R. Indeed we
can rewrite k as its inverse Fourier transform as,

k(δ) =

∫
Rd

p(ω)e−iωδdδ

12
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that can be expressed as

= E
ω∼p

e−iωδ

= E
ω∼p

[cos(ω(δ)) + i sin(ω(δ))]

= E
ω∼p

cos(ω(δ))

= E
ω∼p

cos(ω ·(x−x′)).

Furthermore, for a specific ω we can express cos(ω ·(x−x′)) as a product of two expres-
sion each relative to one of the point, by mapping them into,

zω(x) = (cos(ω ·x), sin(ω ·x)).

By the sum of angles formula we obtain,

⟨zω(x), zω(x′)⟩ = cos(ω ·(x−x′),

that when combined over ω according to p as expected value kp(δ),

E
ω∼p

⟨zω(x), zω(x′)⟩ = E
ω∼p

cos(ω ·(x−x′)

= k(x,x′).

For ω sampled according to p the product ⟨zω(x), zω(x′)⟩ is an unbiased estimator of
k(x,x′).

The idea is thus to approximate the kernel by drawing a limited number of coef-
ficients. We draw a sample ωi

D
i=1 ∼ pD of D coefficients i.i.d, and represent every

instances as a vector z(x) ∈ [−1, 1]2D,

z(x) =
1√
D

(cos(ω1 ·x), sin(ω1 ·x), . . . , cos(ωD ·x), sin(ωD ·x)) .

We then get ⟨z(x), z(x′)⟩ ≈ k(x,x′), which is equivalent to,

⟨z(x), z(x′)⟩ ≈ ⟨ϕ(x), ϕ(x′)⟩, (15)

with ϕ the feature map upon which the kernel is built. Thus Equation (15) tells us
that the transformation z(x) approximates the feature map ϕ(x) while only relying
on D features and having 2D dimensions. It provides a way of ”de-kernilizing” the
kernel by approximating its feature map. The learning process can be done in the new
representation z(x) by considering the matrix Z of size n × 2D associating to each
instance its representation z. This is especially useful when 2D ≪ n because the matrix
Z is more convenient to handle than the Gram matrix K.

13
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2.4.3 PAC-Bayes Random Fourier Features

PAC-Bayesian interpretation of Random Fourier Features

Using the Random Fourier Features to build a kernel approximation it is possible to inter-
pret this approximation using the PAC-Bayesian theory as developed by [Letarte et al., 2019].
Indeed when using RFF the idea is to combine cosine representation cos(ω(δ)) according
to the probability distribution over the ω given by the Fourier transform of the kernel.
[Letarte et al., 2019] propose to formalize this representation as hypotheses dependent
on a coefficient ω ∈ R, for (x, y) ∼ D and (x′, y′) ∼ D, h : R×X ×X −→ [−1, 1],

hω(δ) = cos(ω(δ)). (16)

From this the kernel can be considered as a ”Bayesian predictor”, in particular the kernel
built by combining hypotheses hω(δ) according to distribution p is,

kp(δ) = E
ω∼p

hω(δ). (17)

It is important to note that p can be viewed as a prior distribution suggesting that
it is possible to learn a posterior distribution q that should better suited for the task
considered, given the approximation of the kernel called a pseudo kernel,

kq(δ) = E
ω∼q

hω(δ).

Indeed, since hω(δ), can be seen as real-valued predictors. It is possible to measure
how much the output of hω(δ) is coherent with the label of the couple (x,x′) given by
λ(y, y′) in Equation (19), by generalizing the linear loss for this case where we consider
to data points,

ℓ(hω(x,x
′), λ) =

1

2

(
1− λhω(x,x

′)
)
, (18)

with,

λ = λ(y, y′) =

{
1, if y = y′.

−1, otherwise.
(19)

We want the output of the hypothesis to be close to 1 when the two points are of the same
class and close to −1 when they are not. Then combining these losses each associated
with a coefficient ω, according to a distribution q over those features, we can measure
the performance of kq(x,x

′),

ℓ(kq(x,x
′), λ) = E

ω∼q
ℓ(hω( x,x

′), λ)

=
1

2

(
1− λ E

ω∼q
hω(x,x

′)
)

=
1

2

(
1− λkq(x,x

′)
)
.

14
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To be able measure the ”performance” of this representation on the scale of the entire
domain D we define the true risk for hω with ω ∈ R as,

RD(hω) = E
(x,y)∼D

E
(x′,y′)∼D

ℓ(hω(x,x
′), λ),

and the kernel alignment true risk for kq as,

RD(kp) = E
(x,y)∼D

E
(x′,y′)∼D

E
ω∼q

ℓ(hω(x,x
′), λ)

= E
(x,y)∼D

E
(x′,y′)∼D

ℓ(kq(x,x
′), λ)

= E
ω∼q

RD(hω).

(20)

Note that the kernel aligment true risk expression is actually equivalent to the Gibbs risk
of Equation (4). To develop further the analysis we need their empirical counterparts
for a sample S ∼ Dn of size n, the empirical risk of a hypothesis hω is,

R̂S(hω) =
1

n(n− 1)

n∑
i,j=1,i ̸=j

ℓ(hω(xi,xj), λij)

with
λij = λ(yi, yj) (21)

and the kernel alignment empirical risk for kq is,

R̂S(kp) =
1

n(n− 1)
E

ω∼p

n∑
i,j=1,i ̸=j

ℓ(hω(xi,xj), λij)

= E
ω∼p

R̂S(hω).

PAC-Bayes Random Fourier Features bound

From Equation (20) we recall here how the PAC-Bayesian setting can be applied in this
set-up. The only issue is that the hypotheses and therefore every measure associated
depend on couple of instances. We simplify by specifying the hypotheses by considering
them for a fixed point (xi, yi) ∈ S,

hiω(x) = cos(ω ·(x−xi)). (22)
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Furthermore, we specify the true and empirical risk in the same fashion,

Ri
D(kp) = E

(x,y)∼D
ℓ(kp(x,x

i), λ)

= E
(x,y)∼D

E
ω∼p

ℓ(hiω(x), λ)

= E
ω∼p

Ri
D(h

i
ω),

and

R̂i
S(kp) =

1

ns − 1
E

ω∼p

n∑
j=1,i ̸=j

ℓ(hiω(xj), λij)

= E
ω∼p

R̂i
S(h

i
ω)

Thus, it is possible to use transcript the PAC-Bayesian Theorem 1 over the risk Ri
D(kp),

we recall the Theorem presented in [Letarte et al., 2019].

Theorem 3 ([Letarte et al., 2019]). For any domain D, any set of hypotheses H, any
prior distribution P over H, any ϵ ∈ (0, 1], and any real number c > 0, with at least
probability 1−ϵ over the random choice S ∼ Dn of size n, for every posterior distribution
Q over H, we have

Ri
D(kq) ≤ R̂i

S(kq) +
1

c

(
KL(Q||P ) +

c2

2(n− 1)
+ ln

1

ϵ

)
PAC-Bayes Random Fourier Features learning

To get the optimal posterior according to Theorem 3 for a fixed (xi, yi) ∈ S the part
that needs to be minimized is

R̂i
S(kp) +

1

c
KL(q||p).

Which gives the expression of the optimal posterior q∗ using classical PAC-Bayesian
development,

q∗(ω) =
1

Z
p(ω) exp

(
−τ R̂i

S(hω)
)

(23)

with τ = 1
2c and Z a normalization constant

However, considering the problem for only one (xi, yi) ∈ S is very limited since the
whole dataset would have to be considered only relative to this instance. Therefore, to
tackle this issue [Letarte et al., 2019] proposed a method that consists in learning a set
of pseudo kernels for a fixed set of training instances called landmarks. Formally, we
consider a sample of size nl from the source training set L = {(xl, yl)}nl

l=1 ∼ Snl that
will be our landmarks points and a prior distribution p that is the Fourier transform of
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chosen kernel. For each landmark (xl, yl) ∈ L let sample D coefficients ω according to
p such that Ωl = {ωl

m}Dm=1 ∼ pD. We then replace the distribution p with a uniform
distribution P over every set of coefficients Ωl giving P (ωl

m) = 1
D . Therefore the hy-

pothesis associated with a landmark point xl, a coefficient ωl
m, and any data point x is

hlm = cos(ωl
m ·(xl −x)) and the pseudo kernel for P is

klP (xl −x) =
1

D

D∑
m=1

cos(ωl
m ·(xl −x)). (24)

Similarly as the optimal posterior expression in Equation (23) we get the posterior
distribution associated with landmark (xl, yl),

Ql(ωl) =
1

Z l
P l(ω) exp

(
−β

√
n R̂l

S(h
l
ω)
)

(25)

We obtain the following representation of every x ∈ D,

ϕ(x) =
(
kQ1(x1,x), . . . , kQnl (xnl

,x)
)
.

This nl dimensional mapping is assumed to be pertinent for the learning problem, be-
cause for every landmark point the learned pseudo kernel is optimized with the objective
of having it be as well aligned with all instances in D as possible. The fact that these
pseudo kernels are aligned using a PAC-Bayesian generalization bound gives guarantees
about how well it should perform on the whole domain D. Meaning, that when presented
with new unknown data points the learnt mapping is guaranteed to remain relevant. The
algorithm PB-landmarks developed by [Letarte et al., 2019] consists of using this new
representation associated with landmark points to train a SVM.

2.5 Domain Adaptation

The classical framework of machine learning relies on an important assumption which
is that the training data and the ones on which the model will be used come from the
same unknown distribution. However, in practice this assumption is hard to verify and
it is needed to design method specifically with this issue in mind. The framework that
enables this is transfer learning [Torrey and Shavlik, 2010] [Pan and Yang, 2010] which
originates from the observation that humans have an innate ability to transfer knowledge
from one domain to another. For example, if a person learns to ride a bicycle, they can
apply some of the learned skills (like balance and coordination) to similar tasks such
as riding a scooter. In that sense, the principle of transfer learning in MLis to mimic
this ability in ML models. The objective is to make the models able to take profit
of existing knowledge Formally, we consider two data distributions, the source domain
S over X S ×YS and the target domain T over X T ×YT . We denote the marginal
distribution over X S as SX and over X T as T X For each domain we define a learning
task, in T it is tT and in S it is tS .
While the usual learning paradigm implies SX = T X and tT = tS transfer learning can
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be separated into three different scenario :

1. Inductive Transfer Learning : SX = T X and tT ̸= tS

2. Transductive Transfer Learning : SX ̸= T X and tT = tS

3. Unsupervised Transfer Learning : SX ̸= T X and tT ̸= tS

We consider here the second case known under the name of Domain Adaptation
(DA) [Redko et al., 2022] [Farahani et al., 2021]. A variety of techniques have been de-
veloped to tackle this problem. Specifically we stand in a special case of DA called
unsupervised DA for classification where we have access to a labeled source sample S
fromS and an unlabeled target sample T from T .

Therefore when drawing leaning samples we get a labelled source sample S = {(xi, yi)}ns
i=1 ∼

Sns and a unlabeled target sample T = {xj}nt
j=1 ∼ T nt . This makes the learning of a

model performing on T hard since the training cannot rely on information from the
target labels. It is therefore necessary to rely on the labels of the source domain and
make the interest of transfer learning evident. Indeed, in the classical learning paradigm
it would be impossible to learn a classification model solely on T because of the absence
of labels. One could possibly implement a clustering method but it would be much less
powerful since it would give no guarantee on the correspondence of the clusters with the
actual classes. However, by building a unsupervised DA procedure we are able to define
a learning process that will be specifically designed to perform well for classification
on T , potentially coming with theoretical guarantees.

Our proposed approach of a binary classifier for unsupervised domain adaptation
stands in the PAC-Bayesian framework and its specification for DA as recalled in the
next section.

3 PAC-Bayes and Domain Adaptation

In this section we recall the important results on the specialization to the PAC-Bayesian
framework developed by/in [Germain et al., 2020] [Germain et al., 2013a] [Germain et al., 2013b].

3.1 Domain adaptation bounds

Given a source domain S, a target one T and a posterior distribution Q over the hy-
pothesis space H as defined in Section 2.5. We have from Equation 10,

RS(GQ) =
1

2
dSX (Q) + eS(Q) (26)

RT (GQ) =
1

2
dT X (Q) + eT (Q). (27)
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This allows the following expression that decomposes the difference between target and
source true risk,

RT (GQ)−RS(GQ) =
1

2

(
dT X (Q)− dSX (Q)

)
+

(
eT (Q)− eS(Q)

)
. (28)

3.1.1 First domain adaptation bound

Before going further we recall two useful quantities to derive the first bound. First, the
pseudometric of domain disagreement disQ (SX , T X ) proposed in [Germain et al., 2020],

disQ (SX , T X ) = |dSX (Q)− dT X (Q)| , (29)

that can be viewed as a measure of divergence between the domains dependant on
the distribution Q. Furthermore, for a specific domain the wanted behavior is to have
hypotheses predicting similar values when presented with the same data point. This
corresponds to a lower value of the disagreement measure. The value of disQ (SX , T X )
lowers as the similarity between dSX (Q) and dT X (Q) increases, meaning that the hy-
potheses have similar predictions in both domain. The best case scenario is to have a
distribution of hypotheses Q providing low disagreement value for any domain Therefore
disQ (SX , T X ) will measure the difference between the domains marginal distribution ac-
cording to Q, with the aim of it being as small as possible indicating a little divergence in
the domain when considered via Q. The other needed measure is the deviation between
the expected joint errors λQ,

λQ = |eS(Q)− eT (Q)| . (30)

This one does not measure the divergence between domain but provide a way of com-
paring the joint performance of classifiers between the two domains according to Q, by
acknowledging the difference in performance in the two domains. We can notice that we
do not dispose of the value of eT by a lack of labels in the target domain. The value
of λQ thus remain inaccessible. However, eT and λQ are very convenient to manipulate
in order to derive upper bounds on RT (GQ) and with small workarounds we can get
formulations that don’t rely on them in the end.

The first domain adaptation bound we consider relies on this two measures and the
source domain risk RS(GQ) to upper bound the target risk RT (GQ) .

Theorem 4. Let H be an hypothesis space, let S be the source domain and T be the
target domain both over X ×Y. For any distribution Q over H, we have,

RT (GQ) ≤ RS(GQ) +
1

2
disQ (SX , T X ) + λQ,

This result is interesting because it allows to upper bound the target risk RT (GQ) in
a very intuitive way using only the source risk RS(GQ), the domain disagreement disQ
and the deviation between the expected joint errors λQ.
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3.1.2 Second domain adaptation bound

The authors of [Germain et al., 2020]developed a second bound that relies most specif-
ically on the target risk decomposition highlighted in Equation 27. To do so they pro-
posed a new measure of divergence called βz-divergence that we recall in Equation (31)
underneath.

βz(T || S) =
[

E
(x,y)∼S

(
T (x, y)

S(x, y)

)z] 1
z

. (31)

With real value z > 0. It takes the expectation of the ration of the density of the data
in the target domain over the source one, raised to the power q. For a data point (x, y)
its density in domain T is noted T (x, y) and in domain S it is S(x, y). Its value should
get higher the more the distribution T and S differ and the opposite should happen if
the distribution are closed. Thus, a low value should indicate a high similarity between
the domains which supposedly means an easier Domain Adaptation task. At the limit
z −→ ∞ the βz-divergence takes the following form,

β∞ (T || S) = sup
(x,y)∈supp(S)

(
T (x, y)

S(x, y)

)
, (32)

with supp(S) defining the support of S.
The important issue regarding the βz-divergence is that it only operates for instances

(x, y) at the intersection between supp(S) and supp(T ), that might not contain every
points in the target domain. However, it is important to access information about the
entire domain T . To indicate the distribution of the data contained in the support of T
but not in the support of S, (x, y) ∈ supp(T )\supp(S) we define T \S. Inside this area
we consider the worst possible risk denoted ηT \S as,

ηT \S = P
(x,y)∼T

(
(x, y) /∈ supp(S)

)
sup
h∈H

RT (hω). (33)

Using that it is possible to formulate a new upper bound on RT (Gq), stated in
Theorem 5 below.

Theorem 5. Let H be an hypothesis space, let S be the source domain and T be the
target domain both over X ×Y. For any distribution Q over H, we have,

RT (GQ) ≤
1

2
dTX (Q) + βz(T || S)× [es(Q)]1−

1
z + ηT \S .

The second bound provided by Theorem 5 relies on a direct reinterpretation of the
decomposition of RT (Gq) stated in Equation 27. The βz-divergence lets us bridge be-
tween es(q) and et(q), by acting as re-weighting of es(q), while ηT \S gives an information
about the worst risk in T \S since eT \S(q) is not estimable. The measure βz(T || S)
also acts as a trade-off between target disagreement and joint source error, the more
different the domain, the higher β-divergence and the more the emphasis is put on the
joint source error.
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It is important to note that these two domain adaptation bounds, while being an-
chored in the PAC-Bayesian setting, are not the final form of the bounds we want.
Indeed, they rely solely on values that we cannot access directly, such as the source
risk RS(GQ) or the true joint error and disagreement. They thus are very theoretically
interesting but have no practical interest to derive a learning process. Furthermore, the
notion of prior and posterior distribution dear to Bayesian framework are not exploited.
The next step is to get from this, interesting but unpractical, non probabilistic bounds
to PAC-Bayesian bounds that use estimable quantities and will consider a prior and a
posterior distribution.

3.2 PAC-Bayesian bounds for domain adaptation

We recall here the procedure of [Germain et al., 2020] to formulate PAC-Bayesian bounds
from the Domain Adaptations bounds of Subsection 3.1. The value we want to use in
their empirical formulation are the source risk R̂S(Gq) as stated in Equation 1, the source

joint error êS(Q) from Equation 12, the target disagreement d̂TX (Q) from Equation 11

and the domain disagreement d̂isQ. The last one is defined for a sample T drawn from
a target domain T nt of size nt and a sample S drawn from a source domain Sns of size
ns, as,

d̂isQ = |d̂SX (Q)− d̂TX (Q)|. (34)

The next step to derive PAC-Bayesian bound is to use the empirical measure as recalled
above to upper bound their true counterpart. This is the idea behind the following
Theorem 6 from [Germain et al., 2020] that reformulates the PAC-Bayesian Theorem to
be expressed explicitly on a generic loss function.

Theorem 6. [Germain et al., 2020] For any domain D over X ×Y , for any set of
hypotheses H, any prior distribution P over H, any loss function ℓ : H×X ×Y −→ [0, 1],
any real number α > 0, any value ϵ > 0 with at least probability 1 − ϵ over the random
choice S ∼ Dn, we have for all Q over H,

E
(x,y)∼D

E
h∼Q

ℓ(h(x), y) ≤ α

1− e−α

[
1

n

n∑
i=1

E
h∼Q

ℓ(h(xi), yi) +
KL(Q||P ) + ln1

ϵ

m× α

]

This theorem is important in that it let derive upper bounds over the expected joint
error eS(Q), expected disagreement dT X and domain disagreement disq(SX , T X ) from
which we will profit later. Those results are formulated in Corollary 1 from [Germain et al., 2020].

Corollary 1. [Germain et al., 2020] For any source domain S and target domain T
over X ×Y , any hypotheses space H, any prior distribution P over H, any ϵ ∈ (0, 1],
any real numbers a > 0, b > 0, c > 0, we have with at least probability 1− ϵ,
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• With probability 1− ϵ over the choice T ∼ T nt

∀Q on H, dT X (Q) ≤ c

1− e−c

[
d̂TX (Q) +

2KL(Q||P ) + ln1
ϵ

nt × c

]

• With probability 1− ϵ over the choice S ∼ Sns

∀Q on H, eS(Q) ≤ b

1− e−b

[
êS(Q) +

2KL(Q||P ) + ln1
ϵ

ns × b

]

• With probability 1− ϵ over the choice S × T ∼ (S ×T )n each of size n

∀Q on H, disq(SX , T X ) ≤
2a

1− e−2a

[
d̂isq(S, T )(Q) +

2KL(Q||P ) + ln2
ϵ

n× a
+ 1

]
− 1

Further, Corollary 1 enables us to draw connections between the true quantities and
their empirical estimates. Specifically, it provides us with PAC-Bayesian bounds for the
disagreement and joint error in both the source and target domains. The parameters a,
b, c control the trade-off between the empirical term and the complexity term represented
by the KL-divergence between prior and posterior distribution KL(Q||P ). An important
detail to note from Corollary 1 is that the upper bound on disq(SX , T X ) requires the
two samples S and T to be of equal size n. This implies important limitation in practice
since the samples might be of dramatically different size, using this result would then
require to not use all information available.

Utilizing these formulations, we present two critical theorems that furnish PAC-
Bayesian bounds for domain adaptation. The first result in Theorem 7 derives a bound
for the risk in the target domain, RT (Gq), in terms of empirical quantities, such as
the empirical risk in the source domain, the empirical domain disagreement, and the
KL-divergence between the prior and posterior distributions. The second results in The-
orem 8 provides a tighter PAC-Bayesian bound by incorporating additional terms that
capture the divergence between the source and target domains and the worst-case risk
in the target domain outside the source domain’s support. This bound provides a more
nuanced view of the target domain’s risk by directly taking into account the potential
differences between the source and target domains with the β-divergence. More so, it
does not include the empirical source risk R̂S(Gq) making it simpler. Both Theorems
are reformulated from [Germain et al., 2020]

Theorem 7. [Germain et al., 2020] For any domains S and T over X × Y , their
marginal distributions over X SX and T X any set of hypotheses H, any prior distribution
P over H, any ϵ ∈ (0, 1], any real numbers γ > 0 and a > 0, with at least probability
1 − ϵ over the random choice of S × T ∼ (S ×T X )

n both of size n, for every posterior
distribution Q on H, we have
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RT (Gq) ≤ γ′R̂S(Gq) + a′
1

2
d̂isq +

(
γ′

γ
+

a′

a

)(
KL(Q||P ) + ln3

ϵ

n

)
+ λq +

1

2
(a′ − 1),

with γ′ = γ
1−e−γ and a′ = 2a

1−e−2a

Proof. The results is obtained by upper-bounding RS(Gq) with probability ϵ
3 using the

formulation of Theorem 1 and disq with probability 2ϵ
3 according to Corollary 1. These

upper bounds are then plugged in the non-probabilistic bound of Theorem 4

Theorem 7 presents an interesting PAC-Bayesian bound on the target risk RT (Gq).

The bound is defined in terms of an empirical risk on the source domain, R̂S(Gq), which
is a tangible quantity we can calculate given labeled data in the source domain, and

of domain disagreement ̂disq(S, T ), which is the empirical disagreement between the
source and target domains. This disagreement term reflects the dissimilarity between
the two domains and will naturally be higher when the source and target domains are
substantially different. In this bound, the coefficients γ′ and a′ are inversely proportional
to their respective parameters γ and a, and represent trade-off factors for balancing the
different terms in the bound. The bound is minimal when both the empirical risk on
the source domain and the empirical disagreement are low, which indicates a successful
adaptation from the source to the target domain.

The main drawbacks from this bounds is, first that the term αq can still not be
estimated since it relies on eT (Q) while its value might give crucial information. Second
that as pointed earlier the bound on disq(S, T ) requires the two samples S and T to
have the same size which is a great limitation in practice. We now formulate the second
theorem as an adaptation of Theorem 5.

Theorem 8. [Germain et al., 2020] For any domains S and T over X × Y , their
marginal distributions over X SX and T X any set of hypotheses H, any prior distribution
P over H, any ϵ ∈ (0, 1], any real numbers ¿̧0 and b > 0, with at least probability 1 − ϵ
over the random choices of S ∼ Sns of size ns and T ∼ T nt

X of size nt, for every posterior
distribution Q on H, we have

RT (Gq) ≤ c′
1

2
d̂T (Q) + b′ês(Q) + ηT \S +

(
c′

ntc
+

b′

nsb

)(
2KL(Q||P ) + ln

2

ϵ

)
.

With c′ = c
1−e−c and b′ = β∞(T || S) b

1−e−b .

Proof. The result is obtained by upper bounding dT (Q) and eS(Q) according to Corol-
lary 1 and plugging them in Theorem 5

Theorem 8 provides a tighter PAC-Bayesian bound for domain adaptation. It incor-
porates the β-divergence in the form β∞(T || S). This divergence is weighted by b

1−e−b ,
reflecting how the bound penalizes large divergence between the source and target distri-
butions. What’s interesting there is that this bound is minimalist in the term in contains
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compared to the former one. Indeed, the empirical source risk is entirely absent here an
the important values are the target empirical disagreement d̂T (Q) and the source empir-
ical joint error ês that are simple to interpret, giving the bound an intuitive final form.
This bound also incorporates the term ηT \S which is a measure of the worst-case risk in
the target domain that is not covered by the source domain. This term accounts for the
’blind spots’ in the target domain which we are unaware of due to the lack of labeled data
in those regions. However, this term is problematic since it is purely theoretical because
relies on an information on the target domain T that can never be accessed. The same
can be said about β∞(T || S) since it can’t be entirely computed, however it is possible
to estimate it from available or considering it as an hyperparameter. Both solutions are
not theoretically adequate with the bound but lets derive pertinent learning procedures.

These theorems provide the theoretical foundation for designing algorithms that can
effectively adapt from a source domain to a target domain. In the next section we recall
the algorithms derived from these results, PBDA [Germain et al., 2013a] from Theorem 7
and DALC [Germain et al., 2013b] from Theorem 8

3.3 PAC-Bayesian algorithms for Domain Adaptation : PBDA & DALC

The two domain adaptation learning PBDA and DALC consists on the specialisation of
the results from Theorem 7 and Theorem 8 to linear classifier and spherical Gaussian
distributions. The form of this procedures is inspired by [Germain et al., 2009a]. Relying
on the same PAC-Bayesian results for domain adaptation as our contribution described
in Section 4, PBDA and DALC are important protocols to put in perspective with the
one we derive in Subsection 4.2.

Let H be a hypothesis space over linear classifiers in a d-dimensional space. A linear
classifier hw′(x) ∈ H associated with a vector w′ ∈ Rd is defined as,

hw′(x) = sign(w′ · x) (35)

The prior distribution π0 defined in Equation (36) and posterior distribution pw′ defined
in Equation (37) are restricted to be Gaussian distributions with identity covariance
matrix.

π0 =

(
1√
2π

)d

exp

(
−1

2
||w′||2

)
. (36)

pw =

(
1√
2π

)d

exp

(
−1

2
||w′ −w||2

)
. (37)

This distributions can be seen as multivariate Normal distribution with identity covari-
ance matrix. The prior π0 being center on the d-dimensional 0 vector, π0 = N (0, I),
and the posterior pw being center on the vector w giving, pw = N (w, I).
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3.3.1 PBDA

The first learning procedure is derived from Corollary 2, the specialization of Theorem 7
to linear classifiers.

Corollary 2. [Germain et al., 2013a] For any domains S and T over X × Y , their
marginal distributions over X SX and T X any set of hypotheses H, any prior distribution
P over H, any ϵ ∈ (0, 1], any real numbers γ > 0 and a > 0, with at least probability
1 − ϵ over the random choice of S × T ∼ (S ×T X )

n both of size n, for every posterior
distribution Q on H, we have

RT (hw(x)) ≤ 2γ′R̂S(Gpw) + a′d̂ispw(S, T ) +KL(pw||π0)

+ 2λpw + 2

(
γ′

γ
+

a′

a

) ||w||2 + ln3
ϵ

n
+ (a′ − 1)

with γ′ = γ
1−e−γ and a′ = 2a

1−e−2a

The minimization of this bound for a labelled source sample S = {(xi, yi)}ni=1 ∼ Sn

and a unlabeled target sample T = {xj}nj=1 ∼ T n, both of size n, gives the optimal
posterior distribution pw. A strong assumption made by the authors is that the term
λpw is negligible, allowing to not include it in the optimization problem. Specifically, the
formulation of the part of Corollary 2 to optimize for hyper-parameters Ω > 0 A > 0 is
given by Equation (38).

ΩR̂S(Gpw) +Ad̂ispw(S, T ) + +KL(pw||π0) (38)

Equation (38) is optimized through gradient descent.

3.3.2 DALC

The second learning procedure is derived from Corollary 3 by specializing Theorem 8 to
linear classifiers.

Corollary 3. [Germain et al., 2013b] For any domains S and T over X × Y , their
marginal distributions over X SX and T X any set of hypotheses H, any prior distribution
P over H, any ϵ ∈ (0, 1], any real numbers c > 0 and b > 0, with at least probability
1 − ϵ over the random choices of S ∼ Sns of size ns and T ∼ T nt

X of size nt, for every
posterior distribution Q on H, we have

RT (hw(x)) ≤ c′d̂T (pw) + 2b′êS(pw) + ηT \S +

(
c′

ntc
+

b′

nsb

)(
||w||2 + ln

2

ϵ

)
With c′ = c

1−e−c and b′ = β∞(T || S) b
1−e−b .

The minimization of this bound for a labelled source sample S = {(xi, yi)}ns
i=1 ∼

Sns and a unlabeled target sample T = {xj}nt
j=1 ∼ T nt gives the optimal posterior
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distribution pw. The part of Corollary 3 to optimize is formulated in the following form,

Cd̂T (pw) + 2BêS(pw) + ||w||2, (39)

with hyper-parameters B > 0 C > 0. As for PBDA the optimization is done using
gradient descent.

4 Contributions : a novel PAC-Bayesian bound for kernel ap-
proximation in Domain Adaptation

Our contributions sit at the intersection of PAC-Bayesian interpretation of RFF and
domain adaptation, as we’ve discussed in the Sections 3 and 2.5 Our primary achievement
lies in the derivation of a novel PAC-Bayesian bound, as presented in Theorem 10. This
bound relates to the alignment, in the target domain, of the pseudo kernel associated
with the posterior distribution Q, that operates in this case over R. This bounded value
is what we consider here as our target true risk, explicitly defined in Equation (41).
The resulting Theorem corresponds to the reinterpretation of Theorem 8 and relies
on a preliminary result in Theorem 9 that follows from Theorem 4 adaptation to kernel
alignment. From Theorem 10 we derive a learning procedure to find an optimal posterior
distribution regarding the output of the kernel in the target domain.

We must emphasize the nature of the hypotheses we are considering, defined in
Equation (16). These hypotheses function over pairs of data points and enable us to
reconstruct or approximate a specific kernel, kp as described in Equation (17). Each of
these hypotheses correspond to a feature ω ∈ R that are the coefficients given by the
Fourier transform p of the kernel kp taken as a probability distribution. A limited number
of these feature is then drawn according to p and the task is to find an optimal posterior
distribution Q for the data at hand, in this case by taking into account the fact that
we have a target domain T with an unlabelled sample and a source domain § for which
the labels are available. In the same fashion as the results from [Letarte et al., 2019]
that we recalled in Section 2.4.3, our approach simplifies both the analysis and the
derivation of generalization bounds by centering our hypotheses on a fixed set of data
points. However, we introduce a subtlety by drawing these points solely from the source
domain. Precisely, for a target domain T , a source domain S for a sample S ∼ Sns of
size ns an hypothesis is associated with a coefficient ω ∈ R a point (xi, yi) ∈ S and a
data point (x, y) indifferently from S or T , we have the hypothesis hiω(x) defined as,

hiω(x) = cos(ω ·(x−xi)), (40)

similarly as Equation (22). The true risk over the target domain T , for the kernel
kq = Eω∼Q hω(x) associated with a distribution Q and a fixed data points (xi, yi) ∈ S
is thus given by,

Ri
T (kq) = E

ω∼Q
E

(x,y)∼T
hiω(x). (41)
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Moreover, we must define the joint error and disagreement necessary to develop the
analysis in our specific scenario. These metrics are derived from the alignment loss
given in Equation (18). The joint error for both T and S Equations (42) and (43).

eiT (q) = E
(x,y)∼T

E
ω,ω′∼2

ℓ(hω(x,xi), λi) · ℓ(hω′(x,xi), λ), (42)

eiS(q) = E
(x,y)∼S

E
ω,ω′∼2

ℓ(hω(x,xi), λi) · ℓ(hω′(x,xi), λ). (43)

Additionally, the disagreement for the target domain T is encapsulated by Equation (44).

diT X
(q) =

1

2

(
1− E

x∼T X

[
E

ω∼q
hω(x,x

i)

]2)
. (44)

Connecting these metrics, we can represent the risk Ri
T (kq) as a combination of the joint

error and disagreement, as seen in Equation (45),

Ri
T (kq) =

1

2
diT X

(q) + eiT (q) (45)

This decomposition is pivotal to the elaboration of upper bounds on the target true risk.

Proof. The form of the following proof is greatly inspired by the equivalent one from [Germain et al., 2015]
The proof requires the margin of the Bayes classifier as defined in Subsection 2.3.2 that we
specialize for the present perspective. Consider the kernel kq = Eω∼Q hω(x) associated
with a distribution Q and a fixed data point (x′, y′) ∈ S We define the random variable
M

′ T
Q that outputs for any data-point (x, y) ∈ T the margin of the Bayes classifier in the

same fashion as Equation (5) ,

M ′
Q(x, y) = E

ω∼Q
λ(y, y′)h′ω(x), (46)

with λ(y, y′) defined in Equation (21). From that we get the first moment µ′
1(M

′ T
Q ) of

the random variable M
′ T
Q , as

µ′
1(M

′ T
Q ) = E

(x,y)∼T
M ′

Q(x, y) (47)

and its second moment µ′
2(M

′ T
Q ) as,

µ′
2(M

′ T
Q ) = E

(x,y)∼T

[
M ′

Q(x, y)
]2

= E
(x,y)∼T

λ(y, y′)2
[
h′ω(x)

]2
, λ(y, y′)2 = 1

= E
(x,y)∼T X

[
h′ω(x)

]2 (48)
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Furthermore, we can rewrite the disagreement d′T X
(Q) in the following way,

d′T X
(Q) =

1

2

(
1− E

x∼T X

[
E

ω∼Q
hω(x,x

′)

]2)
=

1

2

(
1− µ′

2(M
′ T
Q )
) (49)

and the joint error e′T (Q) as,

e′T (Q) = E
(x,y)∼S

E
ω,ω′∼2

ℓ(hω(x,x
′), λ(y, y′)) · ℓ(hω′(x,x′), λ(y, y′)) (50)

Using the definition of µ′
1(M

′ T
Q ) from Equation (47) and the reinterpretation of the

disagreement and joint error From Equations (49) (50) we get,

µ′
1(M

′ T
Q ) = 1− (2e′T (Q) + d′T X

(Q)). (51)

Also, Equation (6) let us reinterpret R′
T (kq) as,

R′
T (kq) = (1− µ′

1(M
′ T
Q )) (52)

. Combining Equation (51) and Equation (52) we obtain the expected result :

R′
T (kq) =

1

2
d′T X

(q) + e′T (q)

4.1 Novel Bounds for Domain Adaptation

4.1.1 Domain Adaptation bound on the real target kernel alignment

Building from the Theorem 5, we craft an upper bound on the target true risk for the
kernel. To translate the result of Theorem 5 the measure ηT \S from Equation 33 is
specified for hypotheses over a fixed data point (xi, yi) ∈ S,

ηiT \S = P
(x,y)∼T

(
(x, y) /∈ supp(S)

)
sup
ω∈Rd

Ri
T (hω) (53)

Theorem 9. Let H be an hypothesis space, let S be the source domain and T be the
target domain both over X ×Y. For any distribution Q over R, we have,

Ri
T (kq) ≤

1

2
diT X (q) + β∞(T || S)× eiS(q) + ηiT \S .

Proof. The following proof is an adaptation and is very similar to the original proof
of Theorem 8 in [Germain et al., 2020], the objective is to get rid of eiT (q) from the

28



4.1 Novel Bounds for Domain Adaptation 4 CONTRIBUTIONS

decomposition of Ri
T (kq) given by Equation 45.

eiT (q) = E
(x,y)∼T

E
ω,ω′∼q2

ℓ(hω(x,x
i), λ(y, yi)) · ℓ(hω′(x,xi), λ(y, yi))

= E
(x,y)∼S

T (x, y)

S(x, y)
E

ω,ω′∼q2
ℓ(hω(x,x

i), λ(y, yi)) · ℓ(hω′(x,xi), λ(y, yi)) +

E
(x,y)∼T

(
(I[(x, y)] /∈ supp(S)) E

ω,ω′∼q2
ℓ(hω(x,x

i), λ(y, yi)) · ℓ(hω′(x,xi), λ(y, yi))

)
(54)

We upper bound separately the two parts of the equation. First, using Hölder’s inequal-
ity 1 we upper bound the first part as,

E
(x,y)∼S

T (x, y)

S(x, y)

(
E

ω,ω′∼q2
ℓ(hω(x,x

i), λ(y, yi)) · ℓ(hω′(x,xi), λ(y, yi))

)
≤[

E
(x,y)∼S

T (x, y)

S(x, y)

q] 1
q

+

[
( E
ω∼Q

(
E

ω,ω′∼q2
ℓ(hω(x,x

i), λ(y, yi)) · ℓ(hω′(x,xi), λ(y, yi))

)
)p
] 1

p

.

For the second part we have,

E
(x,y)∼T

(
(I[(x, y)] /∈ supp(S)) E

ω,ω′∼q2
ℓ(hω(x,x

i), λ(y, yi)) · ℓ(hω′(x,xi), λ(y, yi))

)
=

(
E

(x,y)∼T
((I[(x, y)] /∈ supp(S)))

)
E

(x,y) T \S
E

ω,ω′∼q2
ℓ(hω(x,x

i), λ(y, yi)) · ℓ(hω′(x,xi), λ(y, yi))

=

(
E

(x,y)∼T
((I[(x, y)] /∈ supp(S)))

)
E

(x,y) T \S
eiT \S(q)

=

(
E

(x,y)∼T
((I[(x, y)] /∈ supp(S)))

)(
Ri

T \S(kq)−
1

2
diT \S(q)(q)

)
≤
(

E
(x,y)∼T

((I[(x, y)] /∈ supp(S)))
)

sup
ω∈Rd

Ri
T \S(h

i
ω) = ηiT \S

4.1.2 PAC-Bayesian bound on the real target kernel alignment

Capitalizing on the preceding theorem, we translate its insights into a PAC-Bayesian
bounds, taking the form of Theorem 8. To do so we leverage results from Theorem 6 to
upper bound the real values diT X

(q) and eiS(q) by their empirical counterparts, given for

a target sample T = {xt}nt
t=1 ∼ T nt and a source sample S = {(xj , yj}ns

j=1 ∼ Sns by,

êiS(Q) =
1

ns − 1
E

ω,ω′∼Q2

ns∑
j=1,i ̸=j

ℓ(hiω(x
j), λij) · ℓ(hiω′(xj), λij), (55)
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and

d̂iTX
(Q) =

1

nt
E

(ω,ω′)∼Q2

nt∑
t=1

ℓ(hiω(x
t), hiω′(xt)). (56)

The final PAC-Bayesian bound, as stipulated in Theorem 10, presents an ensemble of
quantities that are, for the most part, estimable.

Corollary 4. For any source domain S and target domain T over X ×Y , with (x′, y′) ∈
S any hypotheses space H, any prior distribution P over H, any ϵ ∈ (0, 1], any real
numbers a > 0, b > 0, c > 0, we have with at least probability 1− ϵ

• With probability 1− ϵ over the choice T ∼ T nt

∀Q on H, d′T X (Q) ≤ c

1− e−c

[
d̂′TX

(Q) +
2KL(Q||P ) + ln1

ϵ

nt × c

]

• With probability 1− ϵ over the choice S ∼ Sns

∀Q on H, e′S(Q) ≤ b

1− e−b

[
ê′S(Q) +

2KL(Q||P ) + ln1
ϵ

ns × b

]

Proof. Since we consider the measures for a fixed point (x′, y′) ∈ S the condition of
Theorem 6 are verified if we take y = λ(y, y′)

Corollary 4 gives PAC-Bayesian upper bounds d̂iTX
(Q) and êiS(Q) using empirical

value. Those bounds are the keypoint of the transcription of Theorem9 into the PAC-
Bayesian form relying on empirical quantities of Theorem 10.

Theorem 10. For any domains S and T over X ×Y , their marginal distributions over
X SX and T X any set of hypotheses H, any prior distribution P over H, any ϵ ∈ (0, 1],
any real numbers c > 0 and b > 0, with at least probability 1− ϵ over the random choices
of S ∼ Sns of size ns and T ∼ T nt

X of size nt, with i ∈ {1, ..., ns}, for every posterior
distribution Q on Rd, we have

Ri
T (kq) ≤ c′

1

2
d̂iTX (q) + b′êiS + ηiT \S +

(
c′

ntc
+

b′

nsb

)(
2KL(q||p) + ln

2

ϵ

)
.

With c′ = c
1−e−c and b′ = β∞(T || S) b

1−e−b . Since β∞(T || S) is a non available measure
of divergence between de domains S and T it is possible to consider it as an hyperpa-
rameter during the learning phase.

Proof. The bound is obtained by upper bounding the values of d̂iTX
(q) and êiS in Theo-

rem 9 using Corollary 4 each with probability 1− 1
ϵ .

Theorem 10 furnishes us with an upper bound on the risk in the target domain. It
combines terms related to disagreement and error. The β-divergence holds theoretical
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importance in our work, acting as a measure of the dissimilarity or divergence between
the source and target domains. By offering precise insights into the extent of domain
shift it allows the trade off between source joint error and target error to be relevant
regarding the divergence between domains. However, in practice we are faced with a
limitation : its value is not directly computable. Limitation that is possible to circumvent
by considering it as a tunable hyperparameter in the learning process. Validating this
hyperparameter let the model implicitly gauge the domain shift by selecting the value
giving the best performances.

This PAC-Bayesian bound is the main result of our work. Combining kernel approx-
imation using Random Fourier Features 15, with domain adaptation 2.5. All of that
through the PAC-Bayesian perspective, defined for Random Fourier Features from the
work of [Letarte et al., 2019] in section 3 and for domain adaptation with the results
from [Germain et al., 2020] in section 3. We now derive a learning strategy minimizing
the bound with the objective of obtaining a suitable new representation of the data with
learnt pseudo kernel.

4.2 Pseudo kernel learning in practice

Relying on Theorem 10, the learnt representation should minimizes the target true risk
for the kernel alignment, meaning that the resulting space should be coherent with the
class in the target domain even in the absence of labeled data. Indeed, we recall from
Section 3 that minimizing the target true risk is synonymous of maximizing the matching
of the pseudo kernel output with the labels. The output is obtained by a combination
of cosine hypotheses each associated with a coefficient ω. Thus the obtained value is
in interval [−1, 1]. Meaning that for a target instance (xj , yj) ∼ T we want the kernel
centered on a source point (xi, yi) ∈ S to output a value near 1 when λij = 1, i.e. when
yj = yi and −1 when λij = −1, i.e. when yj ̸= yi, with λij defined in Equations (19) (21).

Learning a posterior distribution Q that minimizes the bound amounts to finding
the optimal pondering of these hypotheses by putting the emphasis on the hypotheses
giving values near λij .

The minimum bound value for a training sample (xi, yi) ∈ S is obtained by minimiz-
ing

c′
1

2
d̂iTX (Q) + b′êiS +

(
c′

ntc
+

b′

nsb

)(
2KL(Q||p)

)
. (57)

With c′ = c
1−e−c and b′ = β∞(T || S) b

1−e−b . It is noteworthy that the inestimable
quantity ηT \S disappears there making the optimization process more manageable. The
only non empirical value there is then β∞(T || S), that will be, as discussed above, as an
hyperparameter.

landmark based learning

Since 10 bounds the target real risk for a fixed data point (xi, yi) ∈ S, the posterior
distribution Q is optimal for this specific point so we introduce a precision by denoting
this distribution by Qi. Learning a global kernel by minimizing the bound for a specific

31



4.2 learning in practice 4 CONTRIBUTIONS

(xi, yi) ∈ S and apply it to every point would be counter productive since the distribution
over the hypothesis optimal for a point will not be for others. Similarly, learning a
specific kernel for each instance in S would require way too much computation Therefore
we consider a learning protocol relying on a subset of source training points called
landmarks, by computing a specific posterior distribution for each of them. A kernel is
obtained for each landmark, giving a coordinate in the final feature space.

Formally, we consider a sample of size nl from the source training set L = {(xl, yl)}nl
l=1 ∼

Snl that will be our landmarks points and a prior distribution p that is the Fourier
transform of chosen kernel. For each landmark (xl, yl) ∈ L let sample D coefficients ω
according to p such that Ωl = {ωl

m}Dm=1 ∼ pD. We then replace the distribution p with
a uniform distribution P over every set of coefficients Ωl giving P (ωl

m) = 1
D . There-

fore the hypothesis associated with a landmark point (xl, yl), a coefficient ωl
m, and any

data point x is hlm(x) = cos(ωl
m ·(xl −x)) and the pseudo kernel for the uniform prior

distribution P is

kP (xl −x) =
1

D

D∑
m=1

cos(ωl
m ·(xl −x)).

From this formulation our objective is to learn nl posterior distribution Ql each asso-
ciated with a landmark point xl ∈ L. To simplify this computation corresponding to
the minimization of Equation (57) we consider its matrix formulation. In particular,
for a landmark point (xl, yl) we define the empirical target disagreement matrix Dl

T in
Equation (58) and the empirical source joint error matrix El

S in Equation (58).
For a target sample T = {xt}nt

t=1 ∼ T nt and with the disagreement between two fixed
coefficients (ω,ω′) ∈ R defined as diω,ω′ = 1

nt

∑nt
j=1 ℓ(h

i
ω(x

t), hiω′(xt)), the matrix Dl
T is

given by,

Dl
T =



dlω1,ω1
0 0

dlω1,ω2
dlω2,ω2

0

dlω1,ωm
dlω2,ωm

dlω3,ωm
dlωm,ωm


. (58)

Similarly, for a source sample S = {(xs, ys}ns
s=1 ∼ Sns , with the source joint error for

two coefficients as eiω,ω′ = 1
ns−1

∑ns
j=1,i ̸=j ℓ(h

i
ω(x

j), λij) · ℓ(hiω′(xj), λij), the matrix El
S is

formulated as,

El
S =



eiω1,ω1
0 0

eiω1,ω2
eiω2,ω2

0

eiω1,ωm
eiω2,ωm

eiω3,ωm
eiωm,ωm


. (59)

This allows the formulation of the optimization problem to find the posterior distribution
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Ql, in the following form, for fixed hyperparameters values β∞(T || S) > 0, c > 0, b > 0,

Ql = min
Q

c′
1

2
QtDl

T Q+ b′QtEl
S Q+

(
c′

ntc
+

b′

nsb

)
2KL(Q||P )

s.t
D∑

m=1

Q(ωl
m) = 1,

(60)

With c′ = c
1−e−c and b′ = β∞(T || S) b

1−e−b . Indeed, we have d̂iTX
(q) = QtDl

T Q and

êiS = QtEl
S Q. Due to the constrained nature of problem presented in Equation (60) we

formulate the Lagrangian dual function,

L(Q,λ) = c′
1

2
QtDl

T Q+ b′QtEl
S Q

+

(
c′

ntc
+

b′

nsb

)
2KL(Q||P ) + λ1tQ

(61)

and the associated gradient,

∂L
∂Q

= c′QtDl
T + b′QtEl

S +

(
c′

ntc
+

b′

nsb

)
2

(
1 + ln

(
Q

P

))
− λ1t (62)

With λ1t a vector of ones of size m the number of coefficients. By lack of a closed
form solution for the posterior, through the Lagrangian dual function of the problem,
we choose to solve Equation (60) using gradient descent. Specifically we use a trust
region method for constrained optimization with the an implementation of the method
from [Byrd et al., 1999] which makes the optimization process happen only in the regions
where the constraints are verified.

pseudo kernel representation

The set of learnt optimal posterior distribution {Ql}nl
l=1, translate into a set of similarity

features {kQl
}nl
l=1, each defined as,

kQl
(xl −x) =

D∑
m=1

Q(ωl
m) cos(ωl

m ·(xl −x)).

Each of these features, built upon a landmark point xl, is itself a combination of similarity
features cos(ωl

m ·(xl −x)) and is not a kernel anymore, motivating the denomination of
pseudo kernel. While the cosine functions remains the pseudo-kernel’s core, the pondered
summation indicates a composite behavior s. Here, the mapping ϕ(x), described in
Equation (63), for a point x ∈ Rd encodes the similarities of the data point with respect
to each landmark. The new representation thereby offers a summary of the data point’s
relationship with some representatives from the source domain.
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ϕ(x) =
(
kQ1(x1−x), . . . , kQnl

(xnl
−x)

)
, (63)

Utilizing this pseudo-kernel space, the goal would be to train models that can more
effectively generalize across domains by leveraging the landmark-based learned represen-
tations. As a result, models trained in this feature space are expected to have improved
performance in domain adaptation tasks by relying on similarity features bridging the
knowledge gap between the source and target domains. In the present work the model
learnt using this representation is a SVM.

5 Experiments

5.1 Landmarks selection

A crucial question when learning via landmark points is how to choose them. We propose
to implement here 2 methods of selection, at random and using k-medoids We stress again
the fact that in each case the landmark points are selected from the source training
set Str. We denote the set of source training points with label +1 of size n+

s , S
+ =

{(xi,+1)}n
+
s

1 and the set of source training points with label −1 of size n−
s , S− =

{(xi,−1)}n
−
s

1

Random

The first and most straightforward way of making the selection is randomly. Meaning
that we do not have any restriction on which points are chosen with the exception of
class balance. For an even number of nl landmarks we select 1

2nl points in S+ and 1
2nl

points in S− with no restriction regarding their coordinates.

K-medoids

To get hopefully more stable and better results we consider a second way of selecting
landmarks. We use the well-known K-means clustering algorithm which search itera-
tively for synthetic centers for a pre-specified number of clusters K. In this case, we
consider its variant K-medoids where the K clusters are not synthetic points but an
actual point from the cluster such that it is the most central. For an even number of
cluster nl the K-medoids procedure is done on S+ with K = 1

2nl and another K-medoids
clustering is done on S− with K = 1

2nl.

5.2 Hyper-parameters tuning

Hyper-parameters tuning is a central question when learning a model. Since they can
dramatically impact the performances of the final model it is necessary to chose them
carefully. One common solution in supervised classification is to make use of k-fold
cross validation and its extension grid search cross validation that relies on hold a kth
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of the training data and evaluating the performance of the model on them with the
consideration that it will be a good estimator of the performance on the test data set.
However, since we are considering a domain adaptation task the performance we want
to measure is on the target domain and since we are in an unsupervised set up we do
not have access to the label for this domain, implying that a classical cross-validation
cannot be performed.. Therefore the target performance cannot be estimated and we
need to build a workaround to have a validation procedure that is pertinent in the current
scenario. In the present work we implement two strategies, source cross validation, that
only consider the source training set and reverse validation [Zhong et al., 2010] which is
specifically designed for Domain Adaptation tasks.

Reverse validation

Figure 2: Illustration of the reverse validation procedure

The reverse validation [Zhong et al., 2010] also known as circular validation is a
validation strategy that relies both on the source labeled training set and on the target
unlabeled training set to evaluate the capacity of a model to label new data accurately
in a DA setting.

Formally, given a k-folds stratification on the source labeled sample S, such that
S = S1 ∪ . . . ∪ Sk, a k-folds stratification on the unlabeled target sample T , such that
T = T1 ∪ . . . ∪ Tk, a tuple of hyper-parameters and a learning algorithm parameterized
by these parameters. A first classifier hS is trained using the labeled set S \ Si =

{(xi, yi)}
nS\Si
i=1 as source and the unlabeled set T \Ti = {(xj)}

nT\Ti
j=1 as target. Then hS is

used to label T \Ti such that we get a new set Tlabeled = {(xj , hS(xj)}
nTlabeled
j=1 . Finally a
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reverse classifier hreverse is trained using Tlabeled as source and S \ Si as target, then its
performance are evaluated on Si, in our case using the prediction accuracy giving the
reverse cross-validation risk v̂i,p for fold i and set of hyper-parameters p. This process is
repeated for each of the k folds and we select the set of parameter p minimizing :

V̂p =
1

k

k∑
i=1

v̂i,p. (64)

This process is evaluated in Figure 2

5.3 Protocols for comparison

The different protocol implement for comparison are

• Our protocol PBDA-landmarks described in Subsection 4.2 with a Gaussian kernel
with and without reverse validation

• PBRFF-landmarks as described in Subsubsection 2.4.3 with and without reverse
validation, using a Gaussian kernel

• RBF-landmarks, corresponding to the following protocol. Given a set L of nl

landmarks, the data points are mapped to the empirical kernel map composed
of RBF kernels centered on each landmark, such that, for a point x we have its
mapping ϕ(x)

ϕ(x) =
(
k(x1,x), . . . , k(xnl

,x)
)
.

In this case we use a Gaussian kernel with simple cross validation

• PBDA from 3.3.1 and DALC from 3.3.2 with reverse validation

• Transductive Support Vector Machine (TSVM) [Vapnik and Chervonenkis, 1982]
a transductive version of SVM performent with Domain Adaptation tasks with
simple cross validation.

• SVM with simple cross validation.

SVM and TSVM are the baseline protocols for comparison, since the first one is a
classical classification algorithm with no specificity for DA and the second one is an
adaptation of the first supposedly better at DA tasks. Since, we consider a Gaussian
kernel for every protocol relying on kernels we select the parameter γ corresponding to
the dilatation of the kernel via cross validation on the SVM. Every other parameter
is selected specifically for each learning protocol and with different ranges for the toy
experiment in Subsection 5.4 and the experiment on real datas in Subsection 5.5.

5.4 Toy experiments

We first experiment on the two intertwining moons dataset illustrated in figure 3 with
rotation degrees d ∈ {10, 20, 30, 40, 50, 70, 90} by doing 10 runs for each d and averaging
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the results by rotation degree. The source test set is generated first by sampling 3000
points at 0° degree of rotation. Then for each d a target test set of also of 3000 points
and at rotation degree d is generated. Finally at each run we generate a source and
a target training set each composed of 300 points respectively with 0 and d degrees of
rotation. Each d leads to an increasingly difficult DA task, since the target set will be
more and more distant with the source set as illustrated in Figure 3.

(a) Target domain rotated by 10° (b) Target domain rotated by 30°

(c) Target domain rotated by 50° (d) Target domain rotated by 90°

Figure 3: Illustration of domain adaptation tasks corresponding with different degrees
of rotation from 10° to 90°

At the initialization of each learning procedure a new set of landmarks is selected
from the source training set, such that we have the same number of landmarks by label.

The γ parameter, that will be shared by every kernel method, is selected via source
validation in the range γ ∈ {10−7, 10−6, ..., 102}. For every method that relies on learn-
ing a SVM we select the penalisation constant C ∈ {10−1, 101, 103}. When landmarks
are involved we have nl ∈ {2, 4, 8, 16} and if the model uses random Fourier features
their number D is selected from D ∈ {4, 8, 16}. The ranges of the hyper-parameters
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specific to algorithms are the following,

PB-Landmarks : from Equation (25), the trade off parameter β ∈ {10−3, 101, 103}.

PBDA-landmarks : The parameters β∞, c, b from optimization problem in Equa-
tion (60), we get them in the ranges β∞ ∈ {10−3, 101, 103} and c, b ∈ {10−2, 100, 101}.

DALC : from Equation (39) C ∈ [10−2, 100, 101] and B ∈ [10−2, 100, 101].

PBDA : from Equation (38) Ω ∈ [10−2, 100, 101] and A ∈ [10−2, 100, 101].

5.4.1 Results

Table 1 contains the accuracy on the target dataset for the two intertwining moons at
every rotation degree with random landmark selection. The proposed approach without
reverse validation gives the best result in average but does not win by a lot in comparison
with PB-landmarks even though it is not designed for DA. Its performance surpass the
results of DALC and PBDA for low degrees of rotation but fail to keep this trend for
higher degrees. This might indicate that the model fails to capture information when the
two domains are too different by maybe focusing too much on the source domain. This
is confirmed by the result on the source dataset in Table 2. Indeed, DALC and PBDA
show very poor result on source data while our method shows almost no classification
error. This behaviour indicates a strong fitting to the source domain at the detriment of
the target one even though the objective was to learn a common space of representation.
Still, being good on the source domain is appreciable in practice since the model might
be used on both domains. The stability of PBDA-Landmarks on source points is thus a
good point.
The results for K-medoids landmark selection in Table 3 for the target domain and
Table 4 for the source one point in the same direction. The only specificity here is
that the best performing protocol is PBDA-Landmark but this time with reverse cross
validation. This landmark selection procedure does not improve the performance in this
learning scenario.
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Table 1: Mean target test error over 10 runs

Degree SVM TSVM RBF-landmarks PB-landmarks PBDA-landmarks PB-landmarksRCV PBDA-landmarksRCV DALC PBDA

10 0.004 ± 0.002 0.146 ± 0.001 0.008 ± 0.008 0.012 ± 0.008 0.013 ± 0.012 0.010 ± 0.005 0.012 ± 0.008 0.154 ± 0.003 0.158 ± 0.003
20 0.039 ± 0.015 0.122 ± 0.001 0.056 ± 0.033 0.067 ± 0.038 0.056 ± 0.037 0.056 ± 0.030 0.059 ± 0.032 0.187 ± 0.015 0.205 ± 0.004
30 0.158 ± 0.016 0.104 ± 0.001 0.185 ± 0.060 0.185 ± 0.078 0.175 ± 0.073 0.151 ± 0.067 0.175 ± 0.082 0.263 ± 0.014 0.275 ± 0.007
40 0.336 ± 0.030 0.141 ± 0.002 0.357 ± 0.064 0.348 ± 0.102 0.311 ± 0.101 0.302 ± 0.105 0.289 ± 0.110 0.326 ± 0.011 0.337 ± 0.005
50 0.493 ± 0.021 0.206 ± 0.001 0.497 ± 0.075 0.498 ± 0.107 0.431 ± 0.132 0.520 ± 0.091 0.458 ± 0.082 0.382 ± 0.009 0.389 ± 0.007
70 0.709 ± 0.035 0.343 ± 0.002 0.672 ± 0.112 0.665 ± 0.111 0.584 ± 0.153 0.594 ± 0.144 0.641 ± 0.128 0.501 ± 0.005 0.497 ± 0.006
90 0.812 ± 0.057 0.484 ± 0.001 0.746 ± 0.108 0.743 ± 0.118 0.698 ± 0.120 0.744 ± 0.065 0.735 ± 0.083 0.625 ± 0.027 0.589± 0.006

mean 0.364 0.220 0.360 0.359 0.324 0.339 0.338 0.348 0.350

Table 2: Mean source test error over 10 runs

Degree SVM TSVM RBF-landmarks PB-landmarks PBDA-landmarks PB-landmarksRCV PBDA-landmarksRCV DALC PBDA

10 0.000 ± 0.000 0.174 ± 0.001 0.074 ± 0.000 0.001 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 0.613 ± 0.003 0.618 ± 0.002
20 0.000 ± 0.000 0.174 ± 0.001 0.074 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.611 ± 0.005 0.618± 0.002
30 0.000 ± 0.000 0.173 ± 0.001 0.074 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.614 ± 0.004 0.619 ± 0.002
40 0.000 ± 0.001 0.172 ± 0.002 0.074 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.614 ± 0.004 0.618 ± 0.002
50 0.000 ± 0.000 0.172 ± 0.002 0.074 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.615 ± 0.004 0.618 ± 0.004
70 0.000 ± 0.001 0.170 ± 0.002 0.074 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 0.001 ± 0.000 0.000 ± 0.000 0.619 ± 0.002 0.617 ± 0.003
90 0.000 ± 0.000 0.169 ± 0.001 0.074 ± 0.000 0.001 ± 0.000 0.001 ± 0.01 0.005 ± 0.009 0.000 ± 0.000 0.634 ± 0.021 0.611 ± 0.002

mean 0.000 0.172 0.074 0.001 0.001 0.001 0.001 0.617 0.617
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Table 3: Mean target test error over 10 runs

Degree SVM TSVM RBF-landmarks PB-landmarks PBDA-landmarks PB-landmarksRCV PBDA-landmarksRCV DALC PBDA

10 0.004 ± 0.002 0.146 ± 0.001 0.007 ± 0.002 0.012 ± 0.009 0.005 ± 0.004 0.006 ± 0.004 0.008 ± 0.003 0.154 ± 0.003 0.158 ± 0.003
20 0.039 ± 0.015 0.122 ± 0.001 0.071 ± 0.013 0.063 ± 0.039 0.043 ± 0.024 0.038 ± 0.009 0.053 ± 0.042 0.187 ± 0.015 0.205 ± 0.004
30 0.158 ± 0.016 0.104 ± 0.001 0.228 ± 0.037 0.170 ± 0.064 0.162 ± 0.082 0.161 ± 0.074 0.154 ± 0.089 0.263 ± 0.014 0.275 ± 0.007
40 0.336 ± 0.030 0.141 ± 0.002 0.405 ± 0.049 0.306 ± 0.091 0.309 ± 0.087 0.293 ± 0.082 0.304 ± 0.102 0.326 ± 0.011 0.337 ± 0.005
50 0.493 ± 0.021 0.206 ± 0.001 0.546 ± 0.055 0.432 ± 0.116 0.481 ± 0.079 0.483 ± 0.093 0.410 ± 0.124 0.382 ± 0.009 0.389 ± 0.007
70 0.709 ± 0.035 0.343 ± 0.002 0.727 ± 0.085 0.630 ± 0.128 0.635 ± 0.080 0.695 ± 0.074 0.643 ± 0.103 0.501 ± 0.005 0.497 ± 0.006
90 0.812 ± 0.057 0.484 ± 0.001 0.788 ± 0.093 0.740 ± 0.090 0.712 ± 0.102 0.756 ± 0.074 0.719 ± 0.149 0.625 ± 0.027 0.589± 0.006

mean 0.364 0.220 0.396 0.336 0.335 0.347 0.327 0.348 0.350

Table 4: Mean source test error over 10 runs

Degree SVM TSVM RBF-landmarks PB-landmarks PBDA-landmarks PB-landmarksRCV PBDA-landmarksRCV DALC PBDA

10 0.000 ± 0.000 0.174 ± 0.001 0.000 ± 0.000 0.002 ± 0.002 0.001 ± 0.002 0.001 ± 0.000 0.002 ± 0.002 0.613 ± 0.003 0.618 ± 0.002
20 0.000 ± 0.000 0.174 ± 0.001 0.000 ± 0.000 0.002 ± 0.002 0.001 ± 0.001 0.000 ± 0.000 0.001 ± 0.002 0.611 ± 0.005 0.618± 0.002
30 0.000 ± 0.000 0.173 ± 0.001 0.000 ± 0.000 0.002 ± 0.002 0.001 ± 0.001 0.000 ± 0.000 0.001 ± 0.002 0.614 ± 0.004 0.619 ± 0.002
40 0.000 ± 0.001 0.172 ± 0.002 0.000 ± 0.000 0.002 ± 0.002 0.001 ± 0.001 0.000 ± 0.000 0.002 ± 0.002 0.614 ± 0.004 0.618 ± 0.002
50 0.000 ± 0.000 0.172 ± 0.002 0.000 ± 0.000 0.002 ± 0.002 0.001 ± 0.001 0.000 ± 0.000 0.001 ± 0.002 0.615 ± 0.004 0.618 ± 0.004
70 0.000 ± 0.001 0.170 ± 0.002 0.000 ± 0.000 0.002 ± 0.002 0.001 ± 0.001 0.001 ± 0.002 0.000 ± 0.000 0.619 ± 0.002 0.617 ± 0.003
90 0.000 ± 0.000 0.169 ± 0.001 0.000 ± 0.000 0.002 ± 0.002 0.001 ± 0.001 0.002 ± 0.002 0.000 ± 0.000 0.634 ± 0.021 0.611 ± 0.002

mean 0.000 0.172 0.000 0.002 0.001 0.001 0.001 0.617 0.617
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5.5 Amazon product review dataset

For a final evaluation of our proposed learning procedure we consider the Amazon prod-
uct review dataset [Blitzer et al., 2007]. It is composed of the reviews of user on four
types of products books, DVDs, electronics, and kitchen appliances from Amazon.com.
Those reviews are associated with five stars ratings that are binarized with the prepro-
cessing used in [Chen et al., 2011], a review is considered positive if it has 3 or more
stars (y = +1) and negative in the other case (y = −1). Moreover, this preprocessing
makes the data go from 100000 features, representing the bag of words encoding of the
reviews, to approximately 40000 by only keeping the ones that appear at least ten times
for each learning task.

We consider two data set-up, that correspond to two domain adaptation tasks. In
the first one we take the books review as the source domain and the DVDs reviews as
the target domain. In the second one we take the books review as the source domain
and the kitchen appliances reviews as the target domain. In both case the learning is
done with 2000 labeled train source data and 2000 unlabeled train target data. Then
for the DVDs ratings we consider 3586 target instances to test the performance and for
the kitchen appliances ratings we have 5945 instances for test. For both domain 400
validation data are drawn from the train data to run the appropriate validation proce-
dure for each algorithm may it be classical cross validation or reverse validation. The
limitation to only two domain adaptation task is due to a lack of available time to run
the experiments caused to the complexity of the task

Only the results for random landmark selection are reported for the present learning
scenario. The γ parameter is fixed in this scenario at value 0.1 because of limitation in
computation capacity. For the same reason the penalisation constant C used for every
protocol relying on a SVM is fixed at value 1. When landmarks are involved we have
nl ∈ {2, 4, 8, 16} and if the model uses random Fourier features their number D is se-
lected from D ∈ {4, 8, 16}. The ranges of the hyper-parameters specific to algorithms
are the following,

PB-Landmarks : from Equation (25), the trade off parameter β ∈ {10−3, 101, 103}.

PBDA-Landmarks : The parameters β∞, c, b from optimization problem in Equa-
tion (60), we get them in the ranges β∞ ∈ 1 and c, b ∈ {10−2, 100, 101}.

DALC : from Equation (39) C ∈ [10−2, 100, 101] and B ∈ [10−2, 100, 101].

PBDA : from Equation (38) Ω ∈ [10−2, 100, 101] and A ∈ [10−2, 100, 101].
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6 CONCLUSION

5.5.1 Results

For this learning scenario the target accuracy given in Table 5 is disappointing. PBDA-
Landmarks performs drastically worse than PBDA and DALC is even worse than PB-
Landmarks. This indicates that little to no adaptation to target dataset is done and
our protocol has no interest over a similar one like PB-Landmarks even though it is not
designed for Domain Adaptation at all.

Table 5: Mean target test error

Dataset SVM TSVM DALC PBDA PB-landmarks(RCV ) PBDA-landmarks(RCV )

b to d 0.492 0.496 0.173 0.172 0.420 0.458
b to k 0.503 0.503 0.245 0.245 0.465 0.452

mean 0.497 0.499 0.209 0.208 0.442 0.455

6 Conclusion

We developed a new PAC-Bayesian bound by bridging between the PAC-Bayesian ap-
proach of Kernel approximation via Random Fourier Features developped by [Letarte et al., 2019]
and the results of [Germain et al., 2020] in the specification of the PAC-Bayesian frame-
work to Domain Adaptation. This bound guarantees the alignment of a learned pseudo-
kernel in the unlabeled target domain, assuring the quality of the representation of target
data points even in the absence of labels. Motivated by the limitation of the bound to a
single source data point we derived a landmark learning procedure consisting in learning
a pseudo-kernel for every point in a fixed group of source instances. These pseudo-kernels
enables a new representation of the data from both the source and the target domain
that minimizes the real risk of the kernel alignment in the target domain.

The comparison of our method with PAC-Bayesian domain adaptation protocols
PBDA [Germain et al., 2013a] and DALC [Germain et al., 2013b] shown satisfying re-
sult on the toy problem of the two intertwining moons. However when faced with real
data in the sentiment analysis task for Amazon reviews [Blitzer et al., 2007] the model
failed, showing performance even worse then a protocol not designed for Domain Adap-
tation in the case of PB-Landmarks [Letarte et al., 2019]. This results might be partially
improved with a better hyper-parameter tuning making the learning more adapted for
the problem at hand. However, the fact that the performances of PBDA-Landmarks
underclass the ones of PB-Landmarks indicate a failure in the process.

To go further on the analysis developed here it might be interesting to evaluate
the evolution of the performances associated with increasing number of landmarks. In-
deed, the number of landmarks and features might have been underestimated by a great
amount for the real data experiment since the dataset consists of thousands of points and
we drawn at most 16 landmarks. The same could be done with the number of features
used in the kernel approximation, the range used here might insufficient to capture the
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richness of the dataset descriptors.
Another key point of interest is the dependence of the proposed bound to a fixed

data point. If this limitation were lifted it would be possible to learn a single kernel
and to apply it with to every target data-point without relying on landmark points.
The advantage of this would be that the learning process could take advantage of the
entire dataset instead of relying on limited number of points. This issue was solved
by [Letarte et al., 2019] using U-statistics and f -divergence and a similar approach might
be designed with the bound developped here.
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Appendix

Lemma 1. Let a and b be vectors in Rn, and for any positive real numbers p and q
such that 1

p + 1
q = 1, Hölder’s Inequality states:

∥a · b∥1 ≤ ∥a∥p∥b∥q
Where the p-norm ∥a∥p is defined as:

∥a∥p =

(
n∑

i=1

|ai|p
) 1

p
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